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Figure 1. We propose Cloth2Tex, a novel pipeline for converting 2D images of clothing to high-quality 3D textured meshes that can be
draped onto 3D humans. In contrast to previous methods, Cloth2Tex supports a variety of clothing types. Results of 3D textured meshes
produced by our method as well as the corresponding input images are shown above.

Abstract

Fabricating and designing 3D garments has become ex-
tremely demanding with the increasing need for synthesiz-
ing realistic dressed persons for a variety of applications,
e.g. 3D virtual try-on, digitalization of 2D clothes into 3D
apparel, and cloth animation. It thus necessitates a simple
and straightforward pipeline to obtain high-quality texture
from simple input, such as 2D reference images. Since tradi-
tional warping-based texture generation methods require a
significant number of control points to be manually selected
for each type of garment, which can be a time-consuming
and tedious process. We propose a novel method, called
Cloth2Tex, which eliminates the human burden in this pro-
cess. Cloth2Tex is a self-supervised method that generates
texture maps with reasonable layout and structural consis-
tency. Another key feature of Cloth2Tex is that it can be
used to support high-fidelity texture inpainting. This is done
by combining Cloth2Tex with a prevailing latent diffusion
model. We evaluate our approach both qualitatively and

quantitatively and demonstrate that Cloth2Tex can gener-
ate high-quality texture maps and achieve the best visual
effects in comparison to other methods. Project page: xxx

1. Introduction

The advancement of AR/VR and 3D graphics has opened
up new possibilities for the fashion e-commerce industry.
Customers can now virtually try on clothes on their avatars
in 3D, which can help them make more informed purchase
decisions. However, most clothing assets are currently pre-
sented in 2D catalog images, which are incompatible with
3D graphics pipelines. Thus it is critical to produce 3D
clothing assets automatically from these existing 2D im-
ages, aiming at making 3D virtual try-on accessible to ev-
eryone.

Towards this goal, the research community has been de-
veloping algorithms [19, 20, 37] that can transfer 2D im-
ages into 3D textures of clothing mesh models. The key



Figure 2. Problem of warping-based texture generation algorithm:
partially filled UV texture maps with large missing holes as high-
lighted in yellow.

to producing 3D textures from 2D images is to determine
the correspondences between the catalog images and the
UV textures. Conventionally, this is achieved via the Thin-
Plate-Spline (TPS) method [3], which approximates the
dense correspondences from a small set of corresponding
key points. In industrial applications, these key points are
annotated manually and densely for each clothing instance
to achieve good quality. With deep learning models, au-
tomatic key point detectors [19, 35] have been proposed
to detect key points automatically for clothing. However,
as seen in Fig. 2, the inherent self-occlusions (e.g. sleeves
occluded by the main fabric) of TPS warping-based ap-
proaches are intractable, leading to erroneous and incom-
plete texture maps. Several works have attempted to use
generative models to refine texture maps. However, such
a refinement strategy has demonstrated success only in a
small set of clothing types, i.e. T-shirts, pants, and shorts.
This is because TPS cannot produce satisfactory initial tex-
ture maps on all clothing types, and a large training dataset
covering high-quality texture maps of diverse clothing types
is missing. Pix2Surf [20], a SMPL [18]-based virtual try-
on algorithm, has automated the process of texture gener-
ation with no apparent cavity or void. However, due to its
clothing-specific model, Pix2Surf is limited in its ability to
generalize to clothes with arbitrary shapes.

This paper aims to automatically convert 2D reference
clothing images into 3D textured clothing meshes for a
larger diversity of clothing types. To this end, we first
contribute template mesh models for 10+ different clothing
types (well beyond current SOTAs: Pix2Surf (4) and [19]
(2)). Next, instead of using the Thin-Plate-Spline (TPS)
method as previous methods, we incorporate neural mesh
rendering [17] to directly establish dense correspondences
between 2D catalog images and the UV textures of the

meshes. This results in higher-quality initial texture maps
for all clothing types. We achieve this by optimizing the 3D
clothing mesh models and textures to align with the catalog
images’ color, silhouette, and key points.

Although the texture maps from neural rendering are of
higher quality, they still need refinement due to missing re-
gions. Learning to refine these texture maps across differ-
ent clothing types requires a large dataset of high-quality
3D textures, which is infeasible to acquire. We tackle this
problem by leveraging the recently emerging latent diffu-
sion model (LDM) [24] as a data simulator. Specifically,
we use ControlNet [39] to generate large-scale, high-quality
texture maps with various patterns and colors based on its
canny edge version. In addition to the high-quality ground-
truth textures, the refinement network requires the corre-
sponding initial defective texture maps obtained from neu-
ral rendering. To get such data, we render the high-quality
texture maps into catalog images and then run our neural
rendering pipeline to re-obtain the texture map from the cat-
alog images, which now contain defects as desired. With
these pairs of high-quality complete texture maps and the
defective texture maps from the neural renderer, we train a
high-resolution image translation model that refines the de-
fective texture maps.

Our method can produce high-quality 3D textured cloth-
ing from 2D catalog images of various clothing types. In
our experiments, we compare our approach with state-of-
the-art techniques of inferring 3D clothing textures and find
that our method supports more clothing types and demon-
strates superior texture quality. In addition, we carefully
verify the effectiveness of individual components via a thor-
ough ablation study.

In summary, we contribute Cloth2Tex, a pipeline that
can produce high-quality 3D textured clothing in various
types based on 2D catalog images, which is achieved via
• a) 3D parametric clothing mesh models of 10+ different

categories that will be publicly available,
• b) an approach based on neural mesh rendering to trans-

ferring 2D catalog images into texture maps of clothing
meshes,

• c) data simulation approach for training a texture refine-
ment network built on top of blendshape-driven mesh and
LDM-based texture.

2. Related Works
Learning 3D Textures. Our method is related to learning
texture maps for 3D meshes. Texturify [27] learns to gen-
erate high-fidelity texture maps by rendering multiple 2D
images from different viewpoints and aligning the distribu-
tion of rendered images and real image observations. Yu
et al. [38] adopt a similar method, rendering images from
different viewpoints and then discriminating the images by
separate discriminators. With the emergence of diffusion



models [7, 31], recent work Text2Tex [5] exploits 2D dif-
fusion models for 3D texture synthesis. Due to the mighty
generalization ability of the diffusion model [11, 24] trained
on the largest corpus LAION-5B [26], i.e. stable diffu-
sion [24], the textured meshes generated by Text2Tex are
of superior quality and contain rich details. Our method is
related to these approaches in that we also utilize diffusion
models for 3D texture learning. However, different from
previous approaches, we use latent diffusion models only to
generate synthetic texture maps to train our texture inpaint-
ing model, and our focus lies in learning 3D texture corre-
sponding to a specific pair of 2D reference images instead
of random or text-guided generation.
Texture-based 3D Virtual Try-On. Wang et al. [34] pro-
vide a sketch-based network that infers both 2D garment
sewing patterns and the draped 3D garment mesh from 2D
sketches. In real applications, however, many applications
require inferring 3D garments and the texture from 2D cat-
alog images. To achieve this goal, Pix2Surf [20] is the first
work that creates textured 3D garments automatically from
front/back view images of a garment. This is achieved by
predicting dense correspondences between the 2D images
and the 3D mesh template using a trained network. How-
ever, due to the erroneous correspondence prediction, par-
ticularly on unseen test samples, Pix2Surf has difficulty in
preserving high-frequency details and tends to blur out fine-
grained details such as thin lines and logos.

To avoid such a problem, Sahib et al. [19] propose
to use a warping-based method (TPS) [3] instead and to
use further a deep texture inpainting network built upon
MADFNet [40]. However, as mentioned in the introduc-
tion, warping-based methods generally require dense and
accurate corresponding key points in images and UV maps
and have only demonstrated successful results on two sim-
ple clothing categories, T-shirts and trousers. In contrast to
previous work, Cloth2Tex aims to achieve automatic high-
quality texture learning for a broader range of garment cat-
egories. To this end, we use neural rendering instead of
warping, which yields better texture quality on more com-
plex garment categories. We further utilize latent diffusion
models (LDMs) to synthesize high-quality texture maps of
various clothing categories to train the inpainting network.

3. Method
We propose Cloth2Tex, a two-stage approach that converts
2D images into textured 3D garments. The garments are
represented as polygon meshes, which can be draped and
simulated on 3D human bodies. The overall pipeline is il-
lustrated in Fig. 3. The pipeline’s first stage (Phase I) is to
determine the 3D garment shape and coarse texture. We do
this by registering our parametric garment meshes onto cat-
alog images using a neural mesh renderer. The pipeline’s
second stage (Phase II) is to recover fine textures from the

coarse estimate. We use image translation networks trained
on large-scale data synthesized by pre-trained latent diffu-
sion models. The mesh templates for individual clothing
categories are a pre-requirement for our pipeline. We ob-
tain these templates by manual artist design and will make
them publicly available.

Implementation details are placed in the supp. material
due to the page limit.

3.1. Pre-requirement: Template Meshes

For the sake of both practicality and convenience, we design
cloth template mesh (with fixed topology) M for common
garment types (e.g., T-shirts, sweatshirts, baseball jackets,
trousers, shorts, skirts, and etc.). We then build a defor-
mation graph D [29] to optimize the template mesh ver-
tices. This is because per-vertex image-based optimization
is subject to errors and artifacts due to the high degrees of
freedom. Specifically, we construct D with k nodes, which
are parameterized with axis angles A ∈ R3 and translations
T ∈ R3. The vertex displacements are then derived from
the deformation nodes (the number of nodes k is dependent
on the garment type since different templates have differ-
ent numbers of vertices and faces). We also manually select
several vertices on the mesh templates as landmarks K. The
specific requirements of the template mesh are as follows:
vertices V less than 10,000, uniform mesh topology, and
integrity of UV. The vertex number of all templates ranges
between skirt (6,116) to windbreaker (9,881). For unifor-
mity, we set the downsampling factor of D for all templates
to 20 (details of template meshes are placed in the supp.
material). The integrity of UV means that the UV should
be placed as a whole in terms of front and back, without
further subdivision, as used in traditional computer graph-
ics. Fabricating integral UV is not complicated and can be a
super-duper candidate for later diffusion-based texture gen-
eration. See Sec. 3.3.1 for more details.

3.2. Phase I: Shape and Coarse Texture Generation

The goal of Phase I is to determine the garment shape and
a coarse estimate of the UV textures T from the input cat-
alog (Front & Back view). We adopt a differentiable ren-
dering approach [17] to determine the UV textures in a self-
supervised way without involving trained neural networks.
Precisely, we fit our template model to the catalog images
by minimizing the difference between the 2D rendering of
our mesh model and the target images. The fitting proce-
dure consists of two stages, namely Silhouette Matching and
Image-based Optimization. We will now elaborate on these
stages below.



Figure 3. Method overview: Cloth2Tex consists of two stages. In Phase I, we determine the 3D garment shape and coarse texture by
registering our parametric garment meshes onto catalog images using a neural mesh renderer. Next, in Phase II, we refine the coarse
estimate of the texture to obtain high-quality fine textures using image translation networks trained on large-scale data synthesized by
pre-trained latent diffusion models. Note that the only component that requires training is the inpainting network. Please watch our video
on the project page for an animated explanation of Cloth2Tex.

3.2.1 Silhouette Matching

We first align the corresponding template mesh to the 2D
images based on the 2D landmarks and silhouette. Here,
we use BCRNN [35] to detect landmarks L2d and Dense-
CLIP [22] to extract the silhouette M . To fit our various
types of garments, we finetune BCRNN with 2,000+ manu-
ally annotated clothing images per type.

After the mask and landmarks of the input images are
obtained, we first perform a global rigid alignment by an
automatic cloth scaling method to adjust the scaling fac-
tor of mesh vertices according to the overlap of the ini-
tial silhouette between mesh and input images, which en-
sures a rough agreement of the yielded texture map (See
Fig. 8). Specifically, we implement this mechanism by
checking the silhouette between the rendered and reference
images, and then enlarging or shrinking the scale of mesh
vertices accordingly. After an optimum Intersection over
Union(IoU) has been achieved, we fix the coefficient and
send the scaled template to the next step.

We then fit the silhouette and the landmarks of the tem-
plate mesh (the landmarks on the template mesh are pre-
defined as described in Sec. 3.1) to those detected from the
2D catalog images. To this end, we optimize the deforma-
tions of the nodes in the deformation graph by minimizing
the following energy terms:
2D Landmark Alignment Elmk measures the distance be-
tween 2D landmarks L2d detected by BRCNN and the 2D

projection of 3D template mesh keypoints:

Elmk = ∥
∏

K − L2d∥2 (1)

where
∏

denotes the 2D projection of 3D keypoints.
2D Silhouette Alignment Esil measures the overlap be-
tween the silhouette of M and the predicted M from Dense-
CLIP:

Esil = MaskIoU(Sproj(M),M) (2)

where Sproj(M) is the silhouette rendered by the differen-
tiable mesh renderer SoftRas [17] and MaskIoU loss is de-
rived from Kaolin [9].

Merely minimizing Elmk and Esil does not lead to sat-
isfactory results, and optimization procedure can easily get
trapped into local minimums. To alleviate this issue, we
introduce a couple of regularization terms. We first regular-
ize the deformation using the as-rigid-as-possible loss Earap
[28] which penalizes the deviation of estimated local sur-
face deformations from rigid transformations. Moreover,
we further enforce the normal consistency Enorm, which
measures normal consistency for each pair of neighboring
faces). The overall optimization objective is given as

wsilEsil + wlmkElmk + warapEarap + wnormEnorm (3)

where w∗ are the respective weights of the losses.



We set large regularization weights warap, wnorm at the
initial iterations. We then reduce their values progressively
during the optimization procedure, so that the final rendered
texture aligns with the input images. Please refer to the
supp. material for more details.

3.2.2 Image-based Optimization

After the shape of the template mesh is aligned with the
image silhouette, we then optimize the UV texture map
T to minimize the difference between the rendered image
Irend = Srend(M, T ) and the given input catalog images
Iin from both sides simultaneously. To avoid any outside
interference during the optimization, we only preserve the
ambient color and set both diffuse and specular components
to be zero in the settings of SoftRas [17], PyTorch3D [23].

Since the front and back views do not cover the full
clothing texture, e.g. the seams between the front and back
bodice can not be recovered well due to the occlusions, we
use the total variation method [25] to fill in the blank of
seam-affected UV areas. The total variation loss Etv is de-
fined as the norm of the spatial gradients of the rendered
image ∇xIrend and ∇yIrend:

Etv = ∥∇xIrend∥2 + ∥∇yIrend∥2 (4)

In summary, the energy function for the image-based op-
timization is defined as below:

wimg∥Iin − Irend∥2 + wtvEtv (5)

where Iin and Irend are the reference and rendered image.
As shown in Fig. 3, T implicitly changes towards the final
coarse texture Tcoarse, which ensures the final rendering is
as similar as possible with the input. Please refer to our
attached video for a vivid illustration.

3.3. Phase II: Fine texture generation

In Phase II, we refine the coarse texture from Sec. 3.2 and
fill in the missing regions. Our approach takes inspiration
from the strong and comprehensive capacity of Stable Dif-
fusion (SD), which is a terrific model to have by itself in
image inpainting, completion, and text2image tasks. In
fact, there’s also an entire, growing ecosystem around it:
LoRA [12], ControlNet [39], textual inversion [10] and Sta-
ble Diffusion WebUI [1]. Therefore, a straightforward idea
is to resolve our texture completion via SD.

However, we find poor content consistency between the
inpainted blank and original textured UV. This is because
UV data in our setting rarely appears in the training dataset
LAION-5B [26] of SD. In other words, the semantic com-
position of LAION-5B and UV texture (cloth) are quite dif-
ferent and challenging for SD to generalize.

To address this issue, we first leverage ControlNet [39] to
generate ∼ 2, 000+ HQ complete textures per template and

render emission-only images under the front and back view.
Next, we use Phase I again to recover the corresponding
coarse textures. After collecting the pairs of coarse and fine
textures, we train an inpainting network to fill the missing
regions in the coarse texture maps.

3.3.1 Diffusion-based Data Generation

We employ diffusion models [7, 24, 39] to generate realistic
and diverse training data.

We generate texture maps following the UV template
configuration, adopting the pre-trained ControlNet with
edge map as input conditions. ControlNet finetunes text-
to-image diffusion models to incorporate additional struc-
tural conditions as input. The input edge maps are obtained
through canny edge detection on clothing-specific UV, and
the input text prompts are generated by applying image cap-
tioning models, namely Lavis-BLIP [16], OFA [32] and
MPlug [15], on tens of thousands of clothes crawled from
Amazon and Taobao.

After generating the fine UV texture maps, we are al-
ready able to generate synthetic front and back 2D catalog
images, which will be used to train the impainting network.
We leverage the rendering power of Blender native EEVEE
engine to get the best visual result. A critical step of our ap-
proach is to perform data augmentation so that the impaint-
ing network captures invariant features instead of details
that differ between synthetic images and testing images,
which do not generalize. To this end, we vary the blend
shape parameters of the template mesh to generate 2D cata-
log images in different shapes and pose configurations and
simulate self-occlusions, which frequently exist in reality
and lead to erroneous textures as shown in Fig. 2. We hand-
craft three common blendshapes (Fig. 4) that are enough to
simulate the diverse cloth-sleeve correlation/layout in real-
ity.

Next, we run Phase I to produce coarse textures from the
rendered synthetic 2D catalog images, yielding the coarse,
defect textures corresponding to the fine textures. These
pairs of coarse-fine textures serve as the training data for
the subsequent inpainting network.

3.3.2 Texture Inpainting

Given the training data simulated by LDMs, we then train
our inpainting network. Note that we train a single network
for all clothing categories, making it general-purpose.

Regarding the impainting work, we choose
Pix2PixHD [33], which shows better results than al-
ternative approaches such as conditional TransUNet [6],
ControlNet. One issue of Pix2PixHD is that produces
color-consistent output To in contrast to prompt-guided
ControlNet (please check our supp. material for visual-
ization comparison). These results are compared with the



Figure 4. Illustration of the three sleeve-related blendshapes of our template mesh model. These blendshapes allow rendering clothing
images in diverse pose configurations to facilitate simulating real-world clothing image layouts.

input full UV as the condition. To address this issue, we
first locate the missing holes, continuous edges and lines in
the coarse UV as the residual mask Mr (left corner at the
bottom line of Fig. 9). We then linearly blend those blank
areas with the model’s output during texture repairing.
Formally speaking, we compute the output as below:

Tfine = BilateralFilter(Tcoarse +Mr ∗ To) (6)

where BilateralFilter is non-linear filter that can blur the ir-
regular and rough seaming between Tcoarse and To very well
while keeping edges fairly sharp. More details can be seen
in our attached video.

4. Experiments
Our goal is to generate 3D garments from 2D catalog im-
ages. We verify the effectiveness of Cloth2Tex via thor-
ough evaluation and comparison with state-of-the-art base-
lines. Furthermore, we conduct a detailed ablation study to
demonstrate the effects of individual components.

4.1. Comparison with SOTA

We first compare our method with SOTA virtual try-on al-
gorithms, both 3D and 2D approaches.
Comparison with 3D SOTA: We compare Cloth2Tex
with SOTA methods that produce 3D mesh textures from
2D clothing images, including model-based Pix2Surf [20]
and TPS-based Warping [19] (We replace the original
MADF with locally changed UV-constrained Naiver Stokes
method, differences between our UV-constrained naiver-
stokes and original version is described in the suppl. mate-
rial). As shown in Fig. 5, our method produces high-fidelity
3D textures with sharp, high-frequency details of the pat-
terns on clothing, such as the leaves and characters on the
top row. In addition, our method accurately preserves the
spatial configuration of the garment, particularly the overall
aspect ratio of the patterns and the relative locations of the

Figure 5. Comparison with Pix2Surf [20] and Warping [19] on
T-shirts. Please zoom in for more details.

logos. In contrast, the baseline method Pix2Surf [20] tends
to produce blurry textures due to a smooth mapping net-
work, and the Warping [19] baseline introduces undesired
spatial distortions (e.g., second row in Fig. 5) due to sparse
correspondences.

Comparison with 2D SOTA: We further compare
Cloth2Tex with 2D virtual try-on methods: Flow-based
DAFlow [2] and StyleGAN-enhanced Deep-Generative-
Projection (DGP) [8]. As shown in Fig. 6, Cloth2Tex
achieves better quality than 2D virtual try-on methods in
sharpness and semantic consistency. More importantly, our
outputs, namely 3D textured clothing meshes, are naturally
compatible with cloth physics simulation, allowing the syn-
thesis of realistic try-on effects in various body poses. In
contrast, 2D methods rely on prior learned from training



images and are hence limited in their generalization ability
to extreme poses outside the training distribution.

Figure 6. Comparison with 2D Virtual Try-One methods, includ-
ing DAFlow [2] and DGP [8].

User Study: Finally, we conduct a user study to evalu-
ate the overall perceptual quality and consistency with our
methods’ provided input catalog images and 2D and 3D
baselines. We consider DGP the 2D baseline and TPS
the 3D baseline due to their best performance among ex-
isting work. Each participant is shown three randomly se-
lected pairs of results, one produced by our method and the
other made by one of the baseline methods. The participant
is requested to choose the one that appears more realistic
and matches the reference clothing image better. In total,
we received 643 responses from 72 users aged between 15
and 60. The results are reported in Fig. 7. Compared to
DGP [8] and TPS, Cloth2Tex is favored by the participants
with preference rates of 74.60% and 81.65%, respectively.
This user study result verified the quality and consistency of
our method.

 

 

0%

Figure 7. User preferences among 643 responses from 72 partici-
pants. Our method is favored by significantly more users.

4.2. Ablation Study

To demonstrate the effect of individual components in our
pipeline, we perform an ablation study for both stages in
our pipeline.
Neural Rendering vs. TPS Warping: TPS warping has
been widely used in previous work on generating 3D gar-
ment textures. However, we found that it suffers from
challenging cases illustrated in Fig. 2, so we propose a

Figure 8. Ablation Study on Phase I. From left to right: base, base
+ total variation loss Etv, base + Etv + automatic scaling.

new pipeline based on neural rendering. We compare our
method with TPS warping quantitatively to verify this de-
sign choice. Our test set consists of 10+ clothing cate-
gories, including T-shirts, Polos, sweatshirts, jackets, hood-
ies, shorts, trousers, and skirts, with 500 samples per cat-
egory. We report the structure similarity (SSIM [36]) and
peak signal-to-noise ratio (PSNR) between the recovered
textures and the ground truth textures.

As shown in Tab. 1, our neural rendering-based pipeline
achieves superior SSIM and PSNR compared to TPS warp-
ing. This improvement is also preserved after inpainting
and refinement, leading to a much better quality of the final
texture. We conduct a comprehensive comparison study on
various inpainting methods in the supp. material, and please
check it if needed.

Table 1. Neural Rendering vs. TPS Warping. We evaluate the
texture quality of neural rendering and TPS-based warping, with
and without inpainting.

Baseline Inpainting SSIM ↑ PSNR ↑
TPS None 0.70 20.29
TPS Pix2PixHD 0.76 23.81

Phase I None 0.80 21.72
Phase I Pix2PixHD 0.83 24.56

Total Variation Loss & Automatic Scaling (Phase I) As
shown in Fig. 8, dropping the total variation loss Etv and
automatic scaling, the textures are incomplete and can-
not maintain a semantically correct layout. With Etv ,
Cloth2Tex produces more complete textures by exploiting



Figure 9. Comparison with SOTA inpainting methods (Naiver-Stokes [4], LaMa [30], MADF [40] and Stable Diffusion v2 [24]) on texture
inpainting. The upper left corners of each column are the conditional mask input. Blue in the first column shows that our method is capable
of maintaining consistent boundary and curvature w.r.t reference image while Green highlights the blank regions that need inpainting.

the local consistency of textures. Further applying auto-
matic scaling results in better alignment between the tem-
plate mesh and the input images, resulting in a more se-
mantically correct texture map.
Inpainting Methods (Phase II) Next, to demonstrate the
need for training an inpainting model specifically for UV
clothing textures, we compare our task-specific inpaint-
ing model with general-purpose inpainting algorithms, in-
cluding Navier-Stokes [4] algorithm and off-the-shelf deep
learning models including LaMa [30], MADF [40] and Sta-
ble Diffusion v2 [24] with pre-trained checkpoints. Here,
we modify the traditional Navier-Stokes [4] algorithm to a
UV-constrained version because a texture map is only part
of the whole squared image grid, where plenty of non-UV
regions produce an adverse effect for texture in-painting
(please see supp. material for comparison).

As shown in Fig. 9, our method, trained on our syn-
thetic dataset generated by the diffusion model, outperforms
general-purpose inpainting methods in the task of refining
and completing clothing textures, especially in terms of the
color consistency between inpainted regions and the origi-
nal image.

4.3. Limitations

As shown in Fig. 10, Cloth2Tex can produce high-quality
textures for common garments, e.g. T-shirt, Shorts, Trousers
and etc. (blue bounding box (bbox)). However, we have
observed that it is having difficulty in recovering textures
for garments with complex patterns: e.g. inaccurate and in-
consistent local texture (belt, collarband) occurred in wind-
breaker (red bbox). We regard this as the extra accessories
occurred in the garment, which inevitably add on the partial

texture in addition to the main UV.
Another imperfection is that our method cannot main-

tain the uniformity of checked shirts with densely assem-
bled grids: As shown in the second row of Fig. 6, our
method inferior to 2D VTON methods in preserving tex-
ture among which comprised of thousands of fine and tiny
checkerboard-like grids, checked shirts and pleated skirts
are representative type of such garments.

We boil this down to the subtle position changes during
deformation graph optimization period, which leads to the
template mesh becomes less uniform eventually as the regu-
larization terms, i.e. as-rigid-as-possible is not a very strong
constraint energy terms in obtaining a conformal mesh. We
acknowledge this challenge and leave it to future work to
explore the possibility in generating a homogeneous mesh
with uniformly-spaced triangles.

5. Conclusion
This paper presents a novel pipeline, Cloth2Tex, for synthe-
sizing high-quality textures for 3D meshes from the pictures
taken from only front and back views. Cloth2Tex adopts a
two-stage process in obtaining visually appealing textures,
where phase I offers coarse texture generation and phase II
performs texture refinement. Training a generalized texture
inpainting network is non-trivial due to the high topolog-
ical variability of UV space. Therefore, obtaining paired
data under such circumstances is important. To the best of
our knowledge, this is the first study to combine a diffusion
model with a 3D engine (Blender) in collecting coarse-fine
paired textures in 3D texturing tasks. We show the general-
izability of this approach in a variety of examples.

To avoid distortion and stretched artifacts across clothes,



Figure 10. Visualization of 3D virtual try-on. We obtain textured 3D meshes from 2D reference images shown on the left. The 3D meshes
are then draped onto 3D humans.



we automatically adjust the scale of vertices of template
meshes and thus best prepare them for later image-based op-
timization, which effectively guides the implicitly learned
texture with a complete and distortion-free structure. Ex-
tensive experiments demonstrate that our method can effec-
tively synthesize consistent and highly detailed textures for
typical clothes without extra manual effort.

In summary, we hope our work can inspire more future
research in 3D texture synthesis and shed some light on this
area.
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6. Implementation Details
In phase I, we fix the optimization steps of both silhouette
matching and image-based optimization to 1,000, which
makes each coarse texture generation process takes less
than 1 minute to complete on an NVIDIA Ampere A100
(80GB VRAM). The initial weights of each energy term
are wsil = 50, wlmk = 0.01, warap = 50, wnorm =
10, wimg = 100, wtv = 1, we then use cosine scheduler
for decaying warap, wnorm to 5, 1.

During the blender-enhanced rendering process, we aug-
ment the data by random sampling blendshapes of upper
cloth by a range of [0.1, 1.0]. The synthetic images were
rendered using Blender EEVEE engine at a resolution of
5122, emission only (disentangle from the impact of shad-
ing, which is the notoriously difficult puzzle as dissected in
Text2Tex [5]).

The synthetic data used for training texture inpainting
network are yielded from pretrained ControlNet through
prompts (generates from Lavis-BLIP [16], OFA [32] and
MPlug [15]) and UV templates (manually crafted UV maps
by artists) can be shown in Fig. 14, which contains more
garment types than previous methods, e.g. Pix2Surf [20] (4)
and Warping [19] (2).

The only existing trainable Pix2PixHD in phase II is op-
timized by Adam [13] with lr = 2e − 4 for 200 epochs.
Our implementation is build on top of PyTorch [21] along-
side PyTorch3D [23] for silhouette matching, rendering and
inpainting.

Table 2. SOTA inpainting methods act on our synthetic data.

Baseline Inpainting SSIM ↑
Phase I None 0.80
Phase I Navier-Stokes [4] 0.80
Phase I LaMa [30] 0.78
Phase I Stable Diffusion (v2) [24] 0.77
Phase I Deep Floyd [14] 0.80

Table 3. Inpainting methods trained on our synthetic data.

Baseline Inpainting SSIM ↑
Phase I None 0.80
Phase I Cond-TransUNet [6] 0.78
Phase I ControlNet [39] 0.77
Phase I Pix2PixHD [33] 0.83

Figure 11. Visualization of Navier-stokes method on UV tem-
plate. Our locally constrained NS method fills the blanks thor-
oughly (though lack of precision) compared to the original global
counterpart.

The detailed parameters of template meshes in
Cloth2Tex are summarized in Tab. 4, sketch of all template
meshes and UV maps are shown in Fig. 12 and Fig. 13 re-
spectively.

7. Self-modified UV-constrained Naiver-Stokes
Method

As shown in Fig. 11, we display the results between our
self-modified UV-constrained Navier-Stokes (NS) method
(local) and original NS (global) method. Specifically, we
add a reference branch (UV template) for NS and thus con-
fine the inpainting-affected region to the given UV tem-
plate for each garment, thus contributing directly to the in-
terpolation result. Our locally constrained NS method al-
lows blanks to be filled thoroughly compared to the original
global NS method.

The sole aim of modifying the original global NS method
is to conduct a fair comparison with deep learning based
methods as depicted in the main paper.

The noteworthy thing is that for small blank areas (e.g.
Column 1,3 of Fig. 11), the texture uniformity and consis-
tency are well-persevered thus capable of producing plausi-



Figure 12. Visualization of all template meshes used in Cloth2Tex.

Figure 13. All UV maps of template meshes used in Cloth2Tex.



Table 4. Detailed parameters of template mesh in Cloth2Tex. As shown in the table, each template’s vertex is less than 10,000 and all are
animatable by means of Style3D, which is the best fit software for clothing animation.

Category Vertices Faces Key Nodes (Deformation Graph) Animatable
T-shirts 8,523 16,039 427 ✓
Polo 8,922 16,968 447 ✓
Shorts 8,767 14,845 435 ✓
Trousers 9,323 16,995 466 ✓
Dress 7,752 14,959 388 ✓
Skirt 6,116 11,764 306 ✓
Windbreaker 9,881 17,341 494 ✓
Jacket 8,168 15,184 409 ✓
Hoodie (Zipup) 8,537 15,874 427 ✓
Sweatshirt 9,648 18,209 483 ✓
One-piece Dress 9,102 17,111 455 ✓

Figure 14. Texture maps for training instance map guided Pix2PixHD, synthesized by ControlNet canny edge.



Figure 15. Comparison with representative image2image methods with conditional input: autoencoder-based TransUNet [6] (we modify
the base model and add an extra branch for UV map, aims to train it with all types of garment together), diffusion-based ControlNet [39]
and GAN-based Pix2PixHD [33]. It is rather obvious that prompts-sensitive ControlNet limited in recover a globally color-consistent
texture maps. Upper right corner of each method is the conditional input.

ble textures.

8. Efficiency of mainstream Inpainting meth-
ods

As depicted in the main paper, our neural rendering based
pipeline achieves superior SSIM compared to TPS warp-
ing. This improvement is also preserved after inpainting
and refinement, leading to a much better quality of the final
texture.

Free from the page limit in the main paper, here we
conduct a comprehensive comparison study on various in-
painting methods act upon the coarse texture maps derived
from Phase I directly, to demonstrate the efficiency of main-
stream inpainting methods.

First, we compare the state-of-the-art inpainting methods
quantitatively on our synthetic coarse-fine paired dataset.
One thing to note is that checkpoints derived from all deep
learning based inpainting methods are open and free. No
finetune or modification is involved in this comparison. As
described in Tab. 2, none of such methods produce a notice-
able positive impact in boosting the SSIM score compared
to the original coarse texture (None version).

Next, we revise TransUNet [6] with input a conditional
UV map for the unity of the input and output with Con-
trolNet [39] and Pix2PixHD [33]. Then we train cond-
TransUNet, ControlNet, and Pix2PixHD on the synthetic
data for a fair comparison. We input all these three with
original input coarse texture maps, conditional input UV
maps, and output fine texture maps. The selective basis
of TransUNet, ControlNet, and Pix2PixHD originates from
the generative paradigm: TransUNet is a basic autoencoder-
based supervised learning image2image model, ControlNet
is a diffusion-based generative model and Pix2PixHD is a
GAN-based generative model. We want to explore the fea-
sibility of these methods in our task, as depicted in Tab. 3

and Fig. 15, Pix2PixHD is superior in obtaining satisfactory
texture maps in terms of both qualitative and quantitative
views.
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